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Abstract

In this article, an item response (IRT) model is used as a measurement error model

for the dependent variable of a multilevel model where tests or questionnaires consisting of

separate items are used to perform a measurement error analysis. The advantage of using latent

scores as dependent variables of a multilevel model is that it offers the possibility of modeling

response variation and measurement error and separating the influence of item difficulty and

ability level. The two-parameter normal ogive model is used for the IRT model. Itwill be shown

that the stochastic EM (SEM) algorithm can be used to estimate the parameters which are close

to the maximum likelihood estimates. It turns out that this algorithm is easily implemented.

This estimation procedure will be compared to an implementation of the Gibbs sampler in a

Bayesian framework. Examples using real data are given.

Key words: Bayes estimates, Data Augmentation, Gibbs sampler, item response

theory, Markov chain Monte Carlo, multilevel model, stochastic EM, two-parameter normal

ogive model.
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Introduction

Many data in educational science have a hierarchical or clustered structure. For

example, in schooling systems students are nested within schools. Information relevant to

educational outcomes is inherently multilevel or hierarchical in nature. To properly understand

educational phenomena relevant to schooling, it is important to work with multilevel models

that explicitly take this hierarchical organization into account. Therefore, multilevel analysis

is a common way for properly analyzing such data (Bryk & Raudenbush, 1992; Goldstein,

1995). Furthermore, multilevel analysis makes it possible to compare schools in terms of the

achievements of their students and factors can be studied that explain school differences.

In Fox and Glas (2000), a multilevel IRT model is proposed to model such data

and a latent variable is used as outcome in the multilevel analysis. This approach takes into

account that, for example in school effectiveness research, the students' abilities are latent

variables measured with error. The responses to the items of a test or questionnaire are viewed

as multiple discrete and fallible indicators of the latent dependent variable and the relation

between the observed indicators and the latent variable is modeled by an item response theory

(IRT) model. This approach has the advantage that it is no longer assumed that the error

component is independent of the outcome variable, i.e., the score of the test taker. In IRT,

measurement error can be defined locally, for instance, as the variance of the ability parameter

given a response pattern. This local definition of measurement error results in hetroscedasticity.

Another advantage of the IRT approach is that, contrary to observed scores, latent scores are

test-independent, which offers the possibility of analyzing data from incomplete designs, such

as, for instance, matrix-sampled educational assessments, where different (groups of) persons

respond to different (sets of) items.

In the field of IRT models some applications of the multilevel model can be found.

Adams, Wilson and Wu (1997) discuss the treatment of latent variables as outcomes in a

regression analysis. They show that a regression model on latent proficiency variables can

be viewed as a two-level model where the first level consists of the item response measurement

model which serves as a within-student model and the second level consists of a model

on the student population distribution, which serves as a between-students model. Further,

Adams, Wilson and Wu (1997) show that this approach results in an appropriate treatment

of measurement error in the dependent variable of the regression model. Raudenbush and

Sampson (1999) embedded the Rasch model within a three-level hierarchical regression model,

that is, the Level 1 model consists of the predictable and random variation among item

5
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responses within each group. Another application of multilevel modeling in the framework

of IRT models was given by Mislevy and Bock (1989) where group-level and student-level

effects are combined in an hierarchical IRT model. Finally, Patz and Junker (1999) developed

a generic hierarchical item response model which allows covariates on subjects and covariates

on items.

In Fox and Glas (2000), a fully Bayesian estimation procedure is described, and where

a Markov chain Monte Carlo method (Gibbs sampler) is used for concurrently estimating

all parameters. The fully conditional decomposition of Gelfand and Smith's (1990) Gibbs

sampling produces an approximation for the posterior distributions of the parameters. That

is, the Gibbs sampler is used to find the mode of the posterior distribution in a Bayesian

framework; taking account of all sources of uncertainty in the estimation of the parameters.

In the present paper, the Bayes estimator will be compared to an approximate maximum

likelihood estimator. Specific properties of maximum likelihood estimates can be found in, for

example, Lehmann and Casella (1998) and Rao (1973). Besides, the likelihood of the sample

of observations represented by the data is maximized without any prior knowledge regarding

the parameters of interest.

The likelihood function is complex due to the presence of some nuisance parameters.

Maximizing the likelihood directly is often numerically infeasible. The idea is to view the

nuisance parameters as unobserved data, and to associate with the given incomplete-data

problem a complete-data problem for which maximum likelihood estimation is feasible. That

is, the problem of maximizing the likelihood is reformulated in such a way that the maximum

likelihood estimates are more easily computed from a complete-data likelihood. The stochastic

EM (SEM) algorithm is particularly appealing in situations where inference on complete-data

is easy. The algorithm handles complex missing-data structures in which high-dimensional

integrations over the nuisance parameters may be involved. It imputes values for the missing

data and then iteratively performs direct parametric inference based on the complete-data. This

makes it attractive for estimating the multilevel IRT model with latent variables defined by a

complex structural model. Moreover, the parameter estimates resulting from the algorithm are

close to the maximum likelihood estimates. Further applications of the SEM algorithm can be

found in, e.g., Celeux and Diebolt (1985), Celeux et al. (1996), Diebolt and Ip (1996) and Ip

(1994).

In the first section of this paper, the notation and a general multilevel IRT model is

presented. Next, the principles of SEM and the implementation for estimating the parameters of

a multilevel IRT model are described. Furthermore, a parallel will be drawn between parameter

6
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estimation with SEM and Markov chain Monte Carlo (Gibbs sampler). After that, a Dutch

primary language test will be analyzed and the mentioned estimators will be compared. Finally,

the last section contains a discussion and suggestions for further research.

A Multilevel IRT Model

This section contains the basic principles and formulae of a multilevel IRT model. For

a detailed introduction of the model, see Fox and Glas (2000). In its general form, Level 1

of the two level multilevel model consists of a regression model, for each of J nesting Level

2 groups, j = 1, . . . , J, in which the n3 x 1 ability vector 03 is modeled as a function of Q

predictor variables, that is,

0; = Xj13i + ej, (1)

where Xj is an nj x Q matrix of observed predictors and ej is an nj x 1 vector of residuals, that

are assumed to be normally distributed with mean 0 and variance o-2In, . All Q + 1 regression

parameters, 130j, 3Q;, are treated as varying across Level 2, although it is possible to

constrain the variation in one or more parameters to' zero. The random regression parameters

are treated as outcomes in a Level 2 model

W j-y + uj, (2)

where ui is a vector of random effects assumed normally distributed with mean zero and

covariance T, W3 is a matrix consisting of Level 2 characteristics and 'y is a S x 1 vector

of fixed effects.

Suppose each of Ei ni persons, labeled i = 1, . , ni, j = 1,... , J, respond

to K items, labeled k = 1, . . . , K. A binary response Yijk = 1 or 0 is recorded.

Furthermore it is assumed that, conditionally on the item and population parameters, the

responses {Yijk} are independent Bernoulli random variables, with probability of success

Pijk = P (Yijk = 1 I Oij, ak, bk) . The normal ogive model is used to model the {pijk} . This

leads to,

Pijk = 4 (akOij bk) ,

7
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where (I) denotes the standard normal cumulative distribution function. Below, the parameters

of item k will also be denoted by Sk, Sk = (ak, bk)t. Notice, the item difficulty is denoted by

the usual choice b while regression coefficients are denoted by 13. The two parameter model

has a discrimination parameter ak for each item k = 1,... , K. The restrictions ak > 0,

k =1,... ,K, assure that a student, indexed ij, with a higher ability Oi; has a higherprobability

of getting item k correct.

To model guessing in a multiple choice test another set Of parameters, the guessing

parameters, are introduced in the so called three parameter model. The probability that a

student correctly answers an item, indexed k, is represented as the sum of the probabilities

that the student guesses and gets the item correct, ck , plus the probability that the student does

not guess, (1 ck) , and gets the item correct, (II (ak0i; bk); that is,

P ( Y i j k = 1) Oij, ak, bk, ck) = Ck + (1 Ck) 41) (ake ij bk) (4)

An elaborate description of both models can be found in the pioneering work of Birnbaum

(1968) and Lord (1980). Discussions and literature reviews are found in Johnson and Albert

(1999) and van der Linden and Hambleton (1997).

Formulae (1) and (2) define the structural model and formula (3) or (4) the

measurement model. Jointly, this defines a multilevel IRT model which will be estimated using

SEM.

The SEM Algorithm

The EM (expectation-maximization) algorithm is a well-known approach for

computing maximum likelihood estimates in a wide variety of situations (see, Dempster et

al., 1977). Notably, many incomplete data problems can be handled with the EM algorithm.

Also the estimation of latent variable models and random parameter models is supported by

the EM algorithm when they are formulated as missing value problems. In spite of its many

appealing features, the EM algorithm has several drawbacks. For example, it can converge

to local maxima or saddle points of the log-likelihood function and its limiting position is

often sensitive to starting values. In some models, the computation of the E-step involves high

dimensional integrations. Therefore, the E-step can be computationally difficult.

The SEM algorithm (Celeux & Diebolt, 1985) provides an alternative to the EM

approach. Particularly in situations where inference based on complete data is easy, but also
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in cases where the EM approach is intractable or where the E-step involves high dimensional

integrations.

The basic idea underlying the SEM algorithm is to impute missing data with plausible

values and then update parameters on the basis of the complete-data. The SEM algorithm

consists of two steps. The S-step generates a complete-data sample by drawing missing data,

given the observed data and a current estimate of the parameters. In the M-step, the maximum

likelihood estimate of the parameters is computed based on the complete-data. The entire

procedure is iterated a sufficient number of times.

Under specific conditions, the array of estimates corresponding to each draw of

pseudo-complete data forms a Markov chain that converges to a stationary distribution (Ip,

1994). The mean of this stationary distribution is close to the maximum likelihood estimate

and its variance reflects the information loss due to missing data (Diebolt & Ip, 1996).

Let Y be the observed random sample. The values of the Level 1 and Level 2

explanatory variables are known. They are denoted as X and W, respectively. The model

has parameters 0, , Level 1 regression coefficients 0, Level 2 regression coefficients 7 and

variance components a2 and T. The observed or incomplete-data likelihood of the parameters

of interest is given by

1 (t, (72, -y, T; Y) = 11f p (yii I 0i; t) g (0ii I p;, a2) h 03 I -y, di3j,

(5)

where p(yii 0i ;, t) is the IRT model specifying the probability of the observing response

pattern yii as a function of the ability parameter 0ii and the item parameters Further,

g (Oij I fii,a2) is the density of and h(13j I y, T) is the density of f3j. The marginal

likelihood entails a multiple integral over 0i; and ,3g. Computation of two-dimensional integrals

suffices. An EM algorithm is easily implemented in case all discrimination parameters are

equal, that is, in case the measurement error model is the Rasch model (Raudenbush &

Sampson, 1999). The probability model is then a member of the regular exponential family

of distributions. A lesser restrictive IRT model, where the discrimination parameters may

differ per item, is wider applicable but estimating the parameters becomes more difficult.

This problem of integration and maximization relates to the estimation of a random-effects

model for ordinal data and to the full information factor analysis model (Anderson, 1985;

Gibbons & Bock, 1987; Gibbons & Hedeker, 1992; Hedeker & Gibbons, 1994). In the

9
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case of a bi-factor model, Hedeker and Gibbons (1994) utilized Gauss-Hermite quadrature

to numerically integrate over the distribution of random effects. Fisher's method was used to

provide the solution to the likelihood equation. The numerical integration is feasible in these

two-dimensional problems. However, if the number of dimensions is increased, using Gauss-

Hermite quadrature is no longer feasible.

An alternative approach is the stochastic EM algorithm which can handle these

problems and also further development of the multilevel model to three or more levels and more

complex IRT models. The likelihood should be defined as a function of the complete-data such

that a simpler likelihood maximization can be performed. This approach follows the procedure

of Albert (1992) and Johnson and Albert (1999). Assume that there exists a continuous latent

variable that underlies each binary response. The latent variables 00 are related to the observed

responses, Yijk, of a person, indexed ij, on a item, indexed k. This observation Yok can be

interpreted as an indicator that a continuous variable with normal density is above or below

zero. This variable is denoted as Zijk. It follows that

Zijk = akeij bk eijkl (6)

with eok ti N (0, 1) and Yijk = I (Zijk > 0) . Here, I 0 is an indicator variable taking the

value one if its argument is true and zero otherwise. The latent variable structure yields a

model that is equivalent to the normal ogive model. The complete-data likelihood is given by

[lc (C U2, "y, T; Z, 0,13) = H Hp(zo I Oii,) g (o I pj, cr2) h (f3 17', T) , (7)
j il.i

where p (zo I Oki , is normally distributed according to formula (6). It will be shown below,

that maximization of (7) becomes easy, due to the fact that the complete-data likelihood

consists of a product of normal densities. In the exponential family case the stochastic EM

estimates converge to the maximum likelihood estimates by 0 (1/n) (Diebolt & Ip, 1995). It

must be pointed out that the SEM algorithm provides only convergence in distribution and does

not entail a pointwise estimator, as in the case of the EM algorithm. A pointwise estimator

can be obtained by avaraging a sufficient number of successive iterations during the estimation

procedure. The values generated by stochastic EM at the M-step, corresponding to each draw of

the complete-data, form a Markov chain with a stationary distribution which is approximately

centred at the maximum likelihood estimates. The sequence of points represents a set of good

10
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guesses, called the plausible region, with respect to values of the missing data. Usually, the

mean of this stationary distribution is considered as an estimate for the parameters, but the

point in the plausible region with the largest observed log-likelihood could also be considered

as an estimate for the parameters. Computation of this estimate requires the extra effort of

evaluating the observed log-likelihood in every iteration (Diebolt & Ip, 1995).

Implementation of the SEM Algorithm

The multilevel IRT model can be set up as a missing data problem by defining B and

as unobserved variables. The main interest is estimating the item parameters, the regression

coefficients on Level 2, -y, and the variance on Level 1 and Level 2, o-2 and T, respectively. The

SEM procedure, for current values of the parameters -y, 02 and T, completes the observed

data by drawing pseudo-complete data, and then computes the maximum likelihood estimates

of the parameters based on the completed data. The first step in implementing SEM is creating

pseudo-complete data. Hence, samples from the joint distribution of 0, j3 Y, a2, -y , T are

required. Directly drawing a sample from this joint conditional distribution is difficult. It

turns out to be easier to use the Gibbs sampler (e.g., see, Gelfand & Smith, 1990; Geman &

Geman, 1984) to simulate independent draws from the joint conditional distribution of 0 and

0. Therefore, a continuous latent variable structure is introduced that underlies each binary

response. A sample from Z, 0,,0 j Y, Q2, , T is obtained by drawing from the distributions

p (z I y, 0, E) , p (0 I z, [3, cr2) and p (0 I 0 , cr2 ,-y , T). The proposed Gibbs sampler consists

of three steps.

First, consider the distribution of p (z I y, 0, . This conditional distribution of the

latent variables Z given 0, Y follow from formula (6) . For the three parameter normal ogive

model, formula (4) , consider random variables Vijk such that Vijk = 1 if a student, indexed ij,

knows the correct answer to item k and Vip., = 0 if the student does not know the correct answer

to item k. The variables Zijk, formula (6) , are related to the variables Vijk. That is, several cases

arise depending on the value of Yijk. Suppose that Yijk = 0, then 'Vijk = 0 and Zijk < 0. Next,

if Yak = 1 and Vijk = 0, then Z23k > 0. Otherwise if Yijk = 1 and Zijk < 0, then Vijk = 1.

The Gibbs sampling procedure can be extended to obtain a sample from the distribution of the

underlying dichotomous latent variables Zjjk and Vijk (Beguin, 2000; Johnson & Albert, 1999).

Second, the ability parameter 0, given pseudo-complete data Z, and estimates of

/3, o-2) are independent and distributed as a mixture of normal distributions. From (1) and

11
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p (eo I zo, 0i, a2) oc P (z0 I 00, )P (00 10i, cr2)

a
exP [ (61ij iij)21 exp (61ii Xiii3j)2] (8)

2. Lth=i ak (zok + bk)

EkK-1 ak

and v = (EK 1 ka2) 1 It follows directly from standard Bayesian results for normallyk=

distributed variables and a normal prior (e.g., see, Box & Tiao, 1973; Lindley & Smith, 1972)

that

00 Zii, f3j, 02 N lv + X013 13j /a2 1

llv ± 1/02 , i/v (9)

Notice that the posterior mean is a composite estimator; as the sampling variance v of ei;

increases, the relative weight placed on the prior mean, Xi;/3;,. increases.

Third, the fully conditional distribution of fki entails a normal prior induced by the

Level 2 model and normally distributed observations 0,,, that is,

P (03 I 9 3, -y, T) a p (9i i 03, 0'2) P (03 I .7, T)

a exp (2Q (13 -03)t XtX3 x

1
exp (0i W2-y)t T-1 (f3 Wcy))

with (XtjX;) Nit0j. Thus

f ) ; I eh 0'2, , T N(Dd,D), (10)

where Ei = a2 (Xt.iXj)-1, d = E.114j + T-1Wy and D = (E.Ti If Xj,

j = 1, , J, does not have a full column rank, XtiX; has no inverse and there is no unique

solution to the normal equations. Besides, if XtjXj is in the form of a correlation matrix and

it is not nearly a unit matrix, the least squares estimates are sensitive to errors. Estimators

12
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depending on a generalized inverse of ViXi are not unique because they depend entirely on

what generalized inverse is used to define the estimator (Searle, 1971). Estimation of f3i based

on the matrix (XtiXi + kIc1+1) , k > 0 has been found to be a procedure that can help to

circumvent the difficulties associated with the usual least squares estimates (Hoer! & Kennard,

1970).

At each step, the fully conditional distributions of Z and 0 are considered at the level

of persons, samples are d r a w n f o r i = 1, , nj, j = 1, . . . , J. The regression coefficients on

Level 1 are sampled for each group j. Eventually, a random sample (Z, 0, f3) is obtained after

sufficient draws from the sequentially updated fully conditional distributions.

In case of normal components, a more efficient alternative of updating is a block Gibbs

update (Gelman et al., 1995; Hobert & Geyer, 1998; Roberts & Sahu, 1997). In that case, all

of the normal components are updated simultaneously. To use this block Gibbs sampler, the

density of 0, 0 I Z, o-2, -y, T is needed. Treat the regression on the regression parameters, /3,

on Level 1 as J (Q + 1) prior 'data points'. The joint fully conditional distribution of 0j, ,Q;

can be deduced from the weighted linear regression of 'observations' Z; on (0i, f3j) , using

`explanatory variables' X; and 'variance matrix' E;, where

Zi + b a K 0 0
Z; = 0 , X; = In; Xi , = 0 a-2Ini 0 .

Wry 0 Ici+i 0 0 T-1

It follows that,

with

,i3 )t Zj, t, 7, T N (( j,73 j)t , (Xf , (11)

(63, 13)t = (Xf X;) 1 Xf Z;

The proposed Gibbs sampler samples successively from (6) and (11) until a sample

(Z, 0, 0) has been obtained from the simultaneous distribution of (Z, 0,, 3) given the other

parameters and the observed data. That is, until convergence of the Gibbs sampler has occurred.

This completes the stochastic S-step of the SEM algorithm. The attained pseudo-complete data

(Z, 00(3) is then used to estimate (t, cr2, -y, T). Therefore, the M-step entails computing the

estimates of (, a2, T) .

13
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Because, according to (6), the item-parameters depend only on the latent data Z and

the ability parameters, 0, it follows that

Zk = [ 0 1 ] Ek,

where Zk = (Zia, ... Zn11k) , ZnjJk)t and Ek = (Elik, , enjJk)t is a random sample

from N (0, 1). Therefore,

4k = (HtHr HtZk, (12)

with H = [ 0 1 ] . The stands for an estimate of the item parameters based on the pseudo-

complete data (Z, 0,13) . The estimate exclusively based on the observed data will be marked

with a hat. The same notation will be used for the other parameters.

The estimator of the variance on Level 1, (72, follows directly from the regression of 0

on X, with13 as regression coefficients. Thus,

J ni

= EE (6,i; Xij0j)
2

,

j=1 i=1
(13)

which is the maximum likelihood estimator of cr2 given 0 and /3.

The Level 2 model for school j can be written as

13i = Wcy (14)

with E (u3) = 0, E (ujutj) = T. Because (14) is a normal linear model given regression

coefficients 13, it follows that the generalized least squares estimator of -y is

J -1

" " E
VV

rt
j

j=1 j=1

Likewise it follows that the estimator of T is

j=1

(15)

(16)

Notice that an Iterative Generalized Least Squares algorithm (Goldstein, 1995) is needed to

14
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compute both estimates in formula (15) and (16) .

In conclusion, the algorithm to estimate all parameters involves iterating two steps. At

the S-step, the missing data are sampled, given the observed data and a current estimate of the

parameters. Here the S-step is made up of formula (6) and (11). With use of the Gibbs sampler

a pseudo-complete sample is drawn. At the M-step, the missing data are imputed to estimate

all parameters, see formula (12) , (13) , (15) and (16).

Eventually, plausible values or estimates from the M-step, based on the augmented

data from the S-step, are used in the estimation of the parameters of interest. Therefore, define

the parameters of interest A = o-2,-y, T) . The array of points generated by SEM are a

Markov chain, denoted by {em), F2(m), T(m), m E N} = { A (771)
, m E , where m

denotes the iteration number. Under very mild conditions, which are easily verified for the

present model, the Markov chain {A(m)} is approximately stationary. That is, the stationary

distribution of
{A(m) does not change as m takes on different values. As noted above, usually,

the mean of the stationary distribution is considered as an estimate of A. That is, after a burn-in

period of Mo iterations,

M

ith
1 v", (to 2-T2(m), ion),

m =Mo+1

(17)

Each step of the SEM algorithm incorporates a stochastic step, which prevents the sequence

from being immobilized near a saddle point. Therefore, SEM does not terminate in any

stationary point.

As noted above, another estimator for the parameters can be derived from the values

in the plausible region generated at each M-step. This estimator computed from the stochastic

EM iterates is the point with the largest observed log-likelihood, formula(5), this is,

A* = arg max / (A I y) .

i<m<m
(18)

Obtaining this point requires the calculation of the incomplete log-likelihood in every iteration

of the stochastic EM algorithm. Gauss-Hermite quadrature can be used to carry out the

integration over the parameters (0,13) . It is also possible to compute the incomplete likelihood

via the expected complete likelihood, that is,

1 (A I y) = E [IC (A I y, Z*)J = f r (A y, z*) k (z* y, A) dz*, (19)

15
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where Z* represent the augmented data (Z, 0, /3) and k (z* I y, A) is the density of the missing

data conditional on the observed data. In this case, computing At via (19) involves a higher

dimensional integration and is consequently computational more demanding. A rough method

as Monte Carlo integration of (19) is rather difficult because it needs independent samples of

the augmented data Z* at every iteration. The point in the plausible region which maximizes the

observed likelihood is an approximation of the actual maximum likelihood estimator related to

the observed likelihood, formula (5) . For a sufficient number of stochastic EM iterations, that

is, for a sufficient number of points in the plausible region At gets close to the maximum

likelihood estimator. These points can also be used to check whether the stochastic EM

estimator, A, approximates the maximum likelihood estimator of formula (5) .

The variances of the estimators are estimated by the inverse of the observed

information matrix evaluated at A = A, formula (17) , or at the point with the largest observed

likelihood A = A*, formula (18). The observed information matrix is easily computed using

Louis identity which relates the observed-data likelihood and the complete-data likelihood

(Louis, 1982), that is

d21 (A; y)
E,, AC (A; z*) covx

dr
dA
(A; z*)

(20)
dAdAt dAdAt L

where the expectation is taken with respect to k (z* I y, A) . The right-hand side of (20) is

computed with augmented data samples generated independently from k (z* I y, A) where A is

fixed at A or At.

Estimating Parameters with SEM in Comparison with the Gibbs Sampling Approach

It seems worthwhile to compare this implementation of SEM with a fully conditional

decomposition of the Gelfand and Smith's (1990) Gibbs sampling, described in Fox and Glas

(2000). Define the augmented data Z* = (Z, 0, /3) and the parameters of interest as A. This

Gibbs sampler generates samples from the following posterior distribution,

P I = I P (A I z*,Y)P(z* I A', Y) deP (Al Y) (21)

In fact, the described Gibbs sampler generates samples from the marginal posterior distributions

of parameters t, cr2, -y and T, including priors for the parameters. There are two natural

16
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estimates for A following from formula (21) (see, Lehmann & Casella, 1998, pp. 257):

and

=
7F/

E A(m)
m=1

Am =
m

E E (A I 3 z*(m))
m=i

(22)

(23)

Here, Ae is called the empirical estimator (Liu et al., 1994) and Am is called the mixture

estimator. Assuming that the conditional density p (A I z*, y) is simple, the latter is often

easy to compute. The following difference between these estimates can be noted. The SEM

estimate, formula (17) , and the mixture estimate resulting from the Gibbs sampler are the mean

of the expectations of the parameters given the pseudo-complete data, whereas the empirical

estimate resulting from the Gibbs sampler are the mean of the marginal posterior distributions

of the parameters. Liu et al. (1994) showed, under mild conditions, that the mixture estimator is

always better because it has a smaller variance than the empirical estimator. That is, the mixture

estimator has a smaller variance attributable to the Gibbs sampler in estimating the posterior

mean. The posterior variances and credibility intervals are estimated from the sampled values

obtained from the Gibbs sampler. Because the posterior density of A given Z* and Y contains

a prior for A, formula (21) , it follows that the mixture estimate, formula (23) , differs from the

SEM estimate, formula (17) . Moreover, the differences between the sampling schemes will

cause different estimates.

A Dutch Primary School Language Test

To compare the SEM algorithm with the MCMC algorithm, a dataset from a Dutch

primary school language test was analyzed. A multilevel IRT model was estimated with the

SEM algorithm and the Gibbs sampler. Furthermore, a comparison was made between the

multilevel IRT model and an hierarchical model with observed scores only.

This research project entailed investigating whether schools that participate in the

central primary school leaving test in the Netherlands on a regular basis perform better than

schools that do not participate on a regular basis. The pupils of 97 schools were given a

language test for Grade 8 students. In this analysis, 24 items designed by the Netherlands

National Institute for Educational Measurement (Cito) were used. These items were taken

7
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from a standardized Cito test used in most Dutch schools at Grade 8, called the primary school

leaving test. The total number of pupils for which data were available was 2156. Schools

participating in the Cito test (72 schools) on a regular basis are called the Cito schools. The

remaining 25 schools will be called the non-Cito schools.

Two students' characteristics were used as a predictor for the students' achievement:

socio-economic status (SES) and non-verbal intelligence measured using the ISI test. The

SES is based on four indicators: the education and occupation of both parents. Non-verbal

intelligence was measured in Grade 7 by using three parts of an intelligence test. The predictors

ISI and SES were normally standardized. A predictor labeled End equaled 1 if the school

participates in the school leaving test, and equals 0 if this is not the case. A complete description

of the data can be found in (Doolaard, 1999, pp. 57).

The structural model used in the analysis is given by,

0 = 00i + 1311Slii 132SESii

00; 7oo + 701Endi + uo;

01 = 710

02 = 720)

where N (0, 0.2) and uoi N (0, T2) . The two-parameter normal ogive model was used

as the measurement model.

The following procedure was used to obtain initial estimates. Initial values of the

item parameters were computed using Bilog-MG (Zimowski et al., 1996). A distinct ability

distribution was used for every subgroup j. Then the MCMC procedure by Albert (1992) for

estimating the normal ogive model was run. As the Gibbs sampler had reached convergence

the means of the sampled values of (Z, 0, were computed. An EM algorithm was used for

estimating ($, a-2, -y, T) with the 6 (see, for instance Bryk & Raudenbush, 1992).

The number of iterations necessary to reach convergence of the SEM algorithm cannot

be evaluated simply in a general setting. For the Dutch primary leaving test described above,

5,000 iterations were 'enough' in the sense that after a burn-in period of 1,000 iterations a

substantial increase in the number of iterations did not perturb the values of ergodic averages.

Additionally, at every iteration 25 Gibbs sampling steps were taken to generate a sample of the

pseudo-complete data. The. differences in the results were negligible when ranging these Gibbs

sampling steps between 20 to 75. The fully conditional decomposition of Gibbs sampling as
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in Fox & Glas (2000) was run for 20,000 iterations, with a burn-in period of 5,000 iterations.

Non-informative priors were used for the parameters in the Gibbs sampling implementation.

A non-informative prior for the difficulty and discrimination parameter, insuring that each

item will have a positive discrimination index, and assuming independence between the

item difficulty and discrimination parameter leads to the simultaneous noninformative prior

P (e) cc (ak > 0) . A uniform prior was placed on the fixed effects and on the variance

components, that is, p (-y) a c, p (02) cc 1/02 and p (7-2) cx 1/72.

First, the parameter estimates of the measurements model are considered, after that,

the parameter estimates of the structural model and further implications of these estimates are

considered.

In Table 1 and Table 2, the estimates of the item parameters resulting from the Gibbs

sampler with the mixture estimator and the SEM algorithm are given. The SEM algorithm

produces two estimators, the mean of the stationary distribution, formula (17) , labeled under

the column mean, and the point corresponding to the largest observed likelihood, formula (18) ,

labeled under the column max. The multilevel IRT model was identified by fixing two item-

parameters, here, a24 = 1 and b24 = 0.

The columns labeled SD present the standard deviations of the estimates resulting

from the SEM algorithm using Louis identity, formula (20). In this application, 100 samples

of (Z, 0,,3) were obtained to compute the observed information matrix. Unlike the SEM

estimates, the estimates resulting from the Gibbs sampler are calculated in a Bayesian

framework. Therefore, the posterior standard deviations of the parameters are denoted byPSD.

Further, the parameter estimates resulting from the Gibbs sampler are the posterior means. It

can be seen that the SEM estimates of the item parameters are close to the mixture estimates

resulting from the Gibbs sampler. Confidence intervals are used to compare the uncertainty

about the parameter estimates in relation to the different estimators. The Bayesian analogue of

a frequentist confidence interval is usually referred to as a credibility interval. In the Bayesian

framework, the central posterior credibility intervals are calculated as confidence regions for the

parameters. The 95% central posterior credibility intervals are given under the column labeled

CI. All SEM estimates are well within the computed central posterior credibility intervals.

Notable, the posterior standard deviations are, in almost all cases, larger than the standard

deviations related to the SEM estimates. More detailed information concerning this point will

be provided later.

Table 3 presents the results of estimating the fixed effects and random components of

the model computed with the Gibbs sampler and the stochastic EM algorithm. The main result
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of the analysis is that conditionally on SES and ISI, the Cito schools perform better than the

non-Cito schools. The fixed effect, 701, models the contribution of participating in the school

leaving exam to the ability level of the students via its influence on the intercept flop This

intercept 00j is defined as the expected achievement of a student in school j when controlling

for SES and ISI. Thus a positive value of 701 indicates a positive effect of participating in the

school leaving exam to the students' abilities. Further, there is a highly significant association

between the Level 1 predictors ISI and SES and the ability of the students. Obviously, students

with high ISI and SES scores perform better than students with lower scores. The residual

variance for the school-level, 7-0, is the variance of the achievement of students in school

j, ago around the grand mean, yoo, when controlling for SES and ISI. Obviously, the use of

a multilevel model is justified, because a substantial proportion of the variation in the outcome

at the student level was between the schools.

In terms of the the SEM and the Gibbs sampling estimates, the fixed and random

effects are generally quite the same, except for the Level 2 variance, T. The significant

difference between the Level 2 variance-estimates results in different intraclass correlation

coefficients. The proportion of variance in ability accounted for by group-membership, after

controlling for the Level 1 predictor variables is .345 according to the SEM variance-estimates

and .330 according to the SEM variance-estimates which maximizes the observed likelihood.

This coefficient is .398 in case of the variance-estimates resulting from the Gibbs sampler.

As_ an additional check the fixed effects and variance components are also estimated from the

observed scores using HLM for windows (Bryk et al., 1996). For comparative purposes, the

unweighted sums of the item responses were resealed such that their mean and variance were

equal to the mean and variance of the posterior estimates of the ability parameters, respectively.

The standard deviations of the HLM estimates are given under the column labeled SD. The

estimate of the Level 2 variance component is smaller in the HLM analysis whereas the estimate

of a is almost similar in comparison to the other estimates. The intraclass correlation coefficient

consisting of these variance components is .301, which is smaller than the estimates of the

intraclass correlation coefficient from the SEM approach. Furthermore, the estimates of the

fixed effects are smaller except for the main effect, 700. In conclusion, the multilevel IRT

analysis, estimated with the Gibbs sampler and SEM, measures a greater variance between

students' abilities which results in a larger school-level effect. Further, a sharper distinction in

students' achievements is attained.

The standard deviations of the SEM estimates are larger than the standard deviations

of the estimates resulting from the analysis in HLM using observed scores. Obviously, the

20
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estimates resulting from HLM are based on the observed scores, which results in more accurate

estimates, that is, the HLM analysis does not take the uncertainty of the ability parameter into

account. It can be seen from Tables 1 to 3 that in most cases the standard deviations related to

the stochastic EM estimates are smaller than the posterior standard deviations. This observation

was also made in Fox & Glas (2000) and Glas, Wainer and Bradlow (2000). It seems that the

smaller size of the standard deviations in the frequentist framework is related to the fact that

they are based on an asymptotic approximation that does not take the skewness into account.

Finally, Figure 1 shows the plausible region of the variance components. The region

contains the parameter estimates of (a , 7-) obtained at every iteration of the stochastic EM

algorithm. The most central point, that is the mean of (cr, r), corresponds to the stochastic EM

estimate of (a-, r) , formula (17) . The point with the largest observed log-likelihood, formula

(18) , lies in the circle close to the mean. The points within the circle represent estimates

of (a , r) with high observed log-likelihood values, that is, the corresponding log-likelihood

values are close to each other and therefore close to the highest observed log-likelihood. This

illustrates the general idea behind stochastic EM. The parameters of interest are estimated by

taking the mean over all points within the plausible region, where all points correspond to high

observed log-likelihood values. As a result, this estimate lies close to the maximum likelihood

estimate, which is checked by computing the observed log-likelihood at every iteration.

Discussion

In this article, a stochastic EM algorithm is used to estimate the parameters of a

multilevel IRT model. The multilevel IRT model which entails treating the dependent ability

parameters as latent variables in a multilevel model and using an IRT model to model these

variables has several advantages, such as its realistic treatment of measurement error and the

application in incomplete designs. Although direct parametric inference is hard because the

likelihood function is very complex, maximum likelihood estimates can be obtained with the

stochastic EM algorithm.

The use of a SEM algorithm for estimating the parameters of a multilevel IRT model

has several appealing features. First, the algorithm is easy to implement. Second, although the

amount of computation involved can be large, the SEM algorithm can handle the numerical

integrations needed also in cases with more than two levels. Moreover, there are no limitations

to the number of parameters or the number of explanatory variables. It must be remarked that

MML or Bayes model estimation procedures are possible but require the calculation of two-
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dimensional integrals in the case of two levels. The implementation of the Gibbs sampler also

has no limitations to the number of levels (Fox & Glas, 2000). Moreover, the procedure can

also be applied to other measurement error models with latent ability parameters.

The stochastic EM algorithm performs direct inference based on the pseudo-complete

data whereas the Gibbs sampler samples the entire posterior distributions of the parameters.

In the comparison presented, both methods gave almost similar results. It must be pointed out

that the differences between the standard deviations and the posterior standard deviations needs

further research.

The convergence of this implementation of the algorithm is slowed down by the Gibbs

sampling procedure for sampling the pseudo-complete data. The convergence is speeded up

by the block Gibbs sampler, but a further improvement could be the use of another samplings-

technique to sample all pseudo-complete data at once. General techniques for simulatingdraws

directly from the target density as rejection sampling or importance sampling (Gelman et al.,

1995) could improve the rate of convergence. Furthermore, the number of iterations needed to

get a stable estimate could be reduced.
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Table 1. Parameter estimates of the discrimination parameter with SEM and the Gibbs

sampler.

Item

SEM
Gibbs Sampler

mean max
a PSD CI

a SD a SD

1 .856 .075 .816 .074 .784 .074 [0.646, 0.938]

2 .654 .066 .619 .064 .597 .061 [0.485, 0.724]

3 .928 .086 1.038 .085 .870 .096 [0.698,1.073]

4 .668 .057 .631 .064 .628 .059 [0.520, 0.751]

5 1.158 .086 1.058 .087 1.089 .099 [0.906,1.296]

6 1.190 .087 1.165 .085 1.097 .091 [0.927, 1.290]

7 .297 .052 .280 .056 .265 .042 [0.186, 0.351]

8 1.454 .072 1.445 .074 1.407 .122 [1.186, 1.663]

9 .968 .072 .894 .074 .911 .078 [0.767,1.078]

10 .972 .073 .912 .072 .910 .078 [0.765, 1.073]

11 .927 .083 .845 .082 .845 .084 [0.691,1.025]

12 1.019 .075 .981 .075 .960 .088 [0.796, 1.143]

13 .738 .060 .652 .061 .696 .064 [0.578,0.830]

14 1.112 .076 1.047 .075 1.055 .092 [0.888,1.250]

15 .746 .062 .681 .062 .698 .066 [0.575, 0.833]

16 .562 .055 .571 .053 .525 .053 [0.427, 0.632]

17 .685 .058 .641 .057 .647 .061 [0.533, 0.775]

18 1.042 .062 .964 .062 1.011 .087 [0.850, 1.195]

19 1.174 .083 1.050 .084 1.084 .107 [0.888, 1.304]

20 .977 .071 .884 .072 .914 .082 [0.764,1.083]

21 .973 .080 .898 .080 .881 .075 [0.743,1.037]

22 .955 .071 .909 .072 .893 .082 [0.741, 1.062]

23 1.113 .063 .982 .063 1.081 .089 [0.916, 1.265]

24 1 0 1 0 1 0 [1,1]
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Table 2. Parameter estimates of the difficulty parameter with SEM and the Gibbs sampler.

Item

SEM Gibbs Sampler
mean max

b PSD CIb SD b SD

1 -.227 .049 -.257 .045 -.259 .044 [ -.341, -.168]
2 -.169 .045 -.190 .046 -.197 .038 [-.266, -.119]
3 -.843 .048 -.836 .043 -.870 .051 [-.963, -.766]
4 .332 .042 .315 .042 .313 .040 [.241,.396]
5 -.281 .051 -.284 .052 -.312 .056 [ -.414, -.195]
6 .708 .059 .733 .059 .663 .060 [.553, .790]
7 .475 .041 .444 .042 .458 .031 [.400, .521]

8 -.086 .048 -.072 .044 -.109 .069 [- .234,.035J
9 .481 .049 .468 .051 .455 .051 [.362, .560]

10 .100 .047 .080 .045 .073 .049 [- .016, .176]
11 -.451 .050 -.454 .050 -.487 .048 [ -.574, -.388]
12 -.222 .048 -.207 .050 -.249 .051 [-.342, -.143]
13 .152 .041 .121 .041 .133 .042 [.056, .218]
14 .052 .049 .031 .049 .026 .055 [- .072,.142]
15 -.045 .043 -.078 .043 -.067 .041 [- .142, .020]
16 .216 .041 .233 .042 .198 .035 [.133,.271]
17 .243 .041 .223 .042 .226 .040 [.152, .309]

18 .160 .043 .126 .044 .147 .054 [.049,.259]
19 -.557 .052 -.591 .050 -.595 .056 [ -.698, -.476]
20 -.124 .074 -.132 .068 -.154 .049 [-.244, -.053]
21 .289 .054 .259 .055 .244 .048 [.156,.346]
22 -.177 .046 -.212 .046 -.205 .048 [ -.293, -.105]
23 .199 .043 .154 .043 .184 .055 [.083, .299]
24 0 0 0 0 0 0 [0, 0]

Table 3. Parameter estimates of the multilevel model with the Gibbs sampler, SEM and
HLM using sum scores.

Fixed Effects

SEM Gibbs Sampler HLM
mean max

Par. SDPar. SD Par. SD Par. PSD CI

loo .334 .204 .349 .197 .327 .206 [- .074, .729] .361 .044

'Yoi .262 .237 .273 .225 .277 .236 [- .183, .740) .223 .051

io .184 .014 .196 .013 .194 .018 [.160, .231] .156 .010

1'20 .158 .014 .168 .014 .168 .017 [.136,.204] .127 .011

Random Effects Par. SD Par. SD Par. PSD CI Par.

o .423 .020 .439 .021 .445 .027 [.387, .506] .443

r .223 .010 .216 .009 .294 .027 [.222, .390] .191

BEST COPY AVAILABLE
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